Barium and Antimony Distributions on the Hands of Nonshooters

Abstract

REFERENCE: Havekost, D. G., Peters, C. A., and Koons. R. D., "Barium and Antimony Distributions on the Hands of Nonshooters," Journal of Forensic Sciences, JFSCA. Vol. 35, No. 5, Sept. 1990, pp. 1096-1114.

ABSTRACT: Barium and antimony levels from selected areas of the left and right hands of 269 nonshooters provide a database for interpretation of gunshot residue swab analysis results. The database represents a variety of activities of individuals sampled by collectors throughout the United States. Nonshooting exposure to barium and antimony can generally be distinguished from firearms-associated exposure by considering the relative levels of the elements, location on the hands, and condition of the swabs. Consistent definition of sampling procedures and accurate analytical results make this database applicable for interpretation of data generated by most gunshot residue swab examiners.

KEYWORDS: criminalistics, gunshot residues, antimony determination, barium determination

Collection of gunshot primer residue (GSR) from a suspected shooter's hands and quantitative determination of the barium (Ba), antimony (Sb), and, less frequently, lead (Pb) present provide data commonly used to associate the suspect with the recent discharge of a firearm. Currently, GSR collection swab analyses are performed in approximately 50 forensic science laboratories throughout the United States. Interpretation of these analytical results is complicated by the presence of measurable amounts of Ba and Sb on the hands of most persons. An indication of whether a person has been in the environment of a discharging firearm is obtained by comparing the quantities of Ba and Sb removed from the suspect's hands with quantities of these metals removed from the hands of a sample of nonshooters. Ideally, this nonshooter or hand blank database should include people having an environmental exposure to Ba and Sb similar to that of the suspect. Published reports containing amounts of Ba and Sb on the hands of persons not handling firearms are summarized in Table $1[1-11]$. Several of these studies were designed to measure the hand blank levels of only a few persons prior to performing testfiring studies, rather than as hand blank surveys, so they contain a limited number of samples. Nevertheless, the studies shown in Table 1 represent the total published hand

[^0]TABLE 1-Hand blank studies appeuring in the literature.

No. of Samples	Method of Sample Collection	Method of Analysis	Hand Area	No. of Hands/ Subject	Reference
260	paraffin lift	NAA	back	one	[1]
30	film lift	NAA	thumb-forefinger	?	[2]
40	swab, HNO_{3}	NAA	thumb-web-forefinger	one	[3]
249	cotton wool, HCl	AAS	thumb-web	one	
12	swab, HNO_{3}	NAA	back, palm	two	[4]
$23{ }^{h}$	rinse in bag, HNO_{3}	NAA	whole hand	two	[5]
22	filter paper, HNO_{3}	NAA	thumb-web-forefinger	16-one/6-two	[6]
18	two swabs, HNO_{3}	NAA	thumb-web-forefinger	two	[7]
20	water wash	PL	back-thumb	one	[8]
45	tape lift	PL	web-thumb-forefinger-back	one	[9]
32	one swab, HNO_{3}	NAA	back, palm	two	[10]
73	swab, HNO_{3}	AAS	thumb-web-forefinger, palm	two	[11]

${ }^{a}$ Renshaw, G. D., "The Estimation of Lead, Antimony, and Barium in Gunshot Residue by Flameless Atomic Absorption Spectrophotometry," IIome Office Central Research Establishment, Aldermaston, England, personal communication, 1973.
Not all elements were determined for each sample.
'Eighteen samples taken from three subjects over a period of several weeks.
blank experience upon which the GSR examiner must base his or her opinions. The reported studies are characterized by relatively small sample populations and a wide variety in sampling methods, analytical procedures, and results.

In 1982 and 1984, gunshot residue analysts from throughout the United States met at the FBI Academy in Quantico, Virginia, to discuss the state of the art of gunshot residue examinations. They identified the following five limitations in the existing hand blank studies which make them difficult to use for evaluation of GSR test swabs:

1. Variation in the method of collecting the samples-As shown in Column 2 of Table 1 , hand blank data have been obtained using paraffin casts; hand swabs, with either one or two swabs and various solvents; solvent rinses; and tape lifts as methods of sample collection. Attendees at the meetings agreed that the most universally acceptable method of obtaining hand blank data that can be used across jurisdictional boundaries is using two plastic-shafted, cotton-tipped swabs moistened with 5% nitric acid solution per sampling area.
2. Variation in instrumental methods, the use of outdated instrumentation, and inclusion of some unreliable data-As shown in Column 3 of Table 1, existing hand blank results were obtained using neutron activation analysis (NAA), atomic absorption spectrophotometry (AAS), and photoluminescence (PL). GSR examiners generally agreed that most NAA results were reliable, but that variations in extraction and analysis procedures among laboratories made reported Ba and Sb determinations inconsistent when using AAS procedures. Recently, AAS procedures that provide accurate Ba and Sb measurements have been developed [11, 12]. The close agreement between NAA and AAS results allows NAA hand blank data to be used by laboratories using either method of analysis. The PL method is incapable of determining Sb at hand blank levels or Ba at any level, so it has never been used by operational forensic science laboratories. An additional limitation of some of the citations in Table 1 is that they report only averages or ranges, rather than individual results $[4,5,10]$.
3. Unreported or inadequately documented activities and occupations of subjects—Previous studies reported the occupation of the person from whom a hand blank sample was taken, rather than his or her activity prior to swabbing, even though it is widely agreed that a subject's activity affects the amounts of Ba and Sb present to a greater extent than does his or her occupation. The selection of activities in previous studies was not representative of the general population. In reports concerned with test-firing studies, subjects for hand blank collection consisted entirely of students or laboratory workers [4,5,7,8].
4. Variation in areas of the hands sampled-Most previous studies included only backs of hands or one hand only. Moreover, the definition of the areas sampled differed from one investigator to another, particularly when different sampling methods were used. Consistent definitions of hand sampling areas are a requirement of a hand blank database if it is to be used in GSR interpretation. Most examiners currently use both back and palm areas of the hands of suspected shooters in evaluating GSR evidence. The meeting participants felt that useful information would be gained by making both palm to back and right to left hand comparisons.
5. Failure to consider regional differences-Previous hand blank studies each used subjects from a specific geographic area. However, environmental levels of Ba and Sb that are reflected in hand blank results may vary from one location to another. Participants in the meetings agreed that samples collected from throughout the country should be compiled into a widely available hand blank database.

A new survey of nonshooters was designed with the goal of overcoming these limitations in available hand blank data. Conventions pertaining to the method of swabbing the
hands, information collected at the time of swabbing, and analytical procedures were agreed upon. None of the previous studies shown in Table 1 meets all of the agreedupon conventions. FBI Laboratory personnel prepared sample collection kits and sent them to volunteer hand blank collectors. During sample collection, specific information pertaining to the activities of the subject being swabbed was acquired to facilitate interpretation of the results. FBI Laboratory personnel agreed to analyze the swabs and disseminate the results of the study. A total of 667 sample kits were sent to 56 collectors throughout the United States. This report summarizes the results for the 269 swab kits returned and analyzed to date.

Materials and Methods

The sample collection kits assembled by the FBI Laboratory consisted of separately packaged and labeled pairs of swabs and a bottle of 5% nitric acid solution. Each pair of swabs was used for sampling a specific area of the hand. In the first year of this study, the palm and back areas were selected for study. In the second year, an additional optional area was added to provide information requested by several of the seminar attendees. These areas are indicated in Fig. 1. To collect a sample, each swab of a pair was moistened with a few drops of the nitric acid solution and rubbed over the designated sampling area one after the other. The swabs were then placed together in their prelabeled container. One pair of swabs, which was used as a control sample for each subject, contained the swabbing solution only. The sample collector completed a questionnaire about each subject being swabbed. The information obtained is summarized, by example, in the

FIG. 1-Sampling areas on the right hand.
upper portion of Fig. 2. All the swabs were packaged in the containers provided and returned to the FBI Laboratory for analysis.

Upon their receipt in the FBI Laboratory, information from the subject questionnaire sheets was recorded, and the swabs were removed from the packages, examined microscopically to determine the degree of utilization and the nature and amount of soiling, and analyzed for their Ba and Sb contents using NAA procedures reported previously [13]. A typical report of results is shown in the lower portion of Fig. 2.

Discussion of Results

A total of 269 hand blank kits collected by 22 contributors have been analyzed to date. Preliminary evaluation of the data indicates that most of the results are low, in the ranges

FIG. 2-Sample collection and laboratory results information sheet. The upper portion contains information obrained from the subject at the time of sample collection and the lower portion contains laboratory observations and analytical results.
typically reported in other hand blank studies. However, a significant number of subjects were sampled who had relatively high amounts of either Ba or Sb or both on at least one of the sampling areas.

Descriptive statistics of all hand blank data as a group are shown in Table 2. The element concentrations are not normally distributed about their mean values, as is indicated by the proximity of the means to the limits of detection and by the maxima being generally about ten standard deviations above the mean. Further indications of the lack of a normal distribution are that the mean values for Ba and Sb for each sampling area are between 3 and 20 times greater than the median values, and the calculated values of skewness and kurtosis are all high and positive, indicating a long positive tailing of both Ba and Sb distributions. Therefore, the mean and standard deviation values are very poor measures of the distributions of elemental contents among the samples, and interpretation of the results based on Gaussian statistical assumptions is meaningless. In other hand blank studies, it has been suggested that logarithmic normal and t-distribution models of hand blank data can be used to set threshold levels for interpretation of GSR test swab data [1,5]. Although the Ba data in this study are approximately normal following logarithmic transformation, and both Ba and Sb data approximate a t-distribution, we have not applied these models to our data and do not recommend this approach for setting threshold values for reasons to be discussed. The descriptive statistics in Table 2 are provided merely to facilitate comparison with hand blank results reported in other studies.
To assist in evaluating the analytical results, we have divided the hand blank data into four groups, as follows. All subjects having less than $0.5 \mu \mathrm{~g}$ of Ba and $0.05 \mu \mathrm{~g}$ of Sb from the sampling areas on the backs of both hands were placed into a low-Ba/low-Sb hand blank group. The remaining subjects were placed into one of three high hand blank groups depending upon which elements exceeded the cutoff values on the back of hand sampling area. The three high hand blank groups consisted of a high-Ba/high-Sb group having greater than $0.5 \mu \mathrm{~g}$ of Ba and $0.05 \mu \mathrm{~g}$ of Sb on the back of one or both hands,

TABLE 2-Summary statistics of results of analysis of all the hand blank samples; the hand areas are designated R or L, indicating the right or left hand, followed by B, P, or O, indicating the back, palm, and optional area.

	RB	RP	RO	LB	LP	LO
Barium						
No. of samples	266	266	161	268	267	160
Minimum, $\mu \mathrm{g}$	0.000	0.000	0.003	0.001	0.000	0.000
Maximum, $\mu \mathrm{g}$	13.6	24.5	3.94	1.73	42.5	2.41
Median, $\mu \mathrm{g}$	0.058	0.089	0.048	0.055	0.081	0.045
Mean, $\mu \mathrm{g}$	0.22	0.41	0.21	0.16	0.46	0.16
SD, $\mu \mathrm{g}$	0.91	1.78	0.51	0.28	2.67	0.30
Antimony						
No. of samples	268	269	162	269	269	162
Minimum, $\mu \mathrm{g}$	0.000	0.000	0.000	0.000	0.000	0.000
Maximum, $\mu \mathrm{g}$	4.50	33.1	1.22	10.4	9.05	0.421
Median, $\mu \mathrm{g}$	0.003	0.006	0.002	0.003	0.006	0.002
Mean, $\mu \mathrm{g}$	0.030	0.15	0.017	0.050	0.063	0.013
SD, $\mu \mathrm{g}$	0.276	2.02	0.098	0.637	0.562	0.044

TABLE 3 -Analytical resulas for individual hand blank samples in low-Ballow-Sb callegory. The unalytical resulls arc expressed in micrograms of the elemant.

cos'cosososo		$0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
cócosocos		

ロ் ロ்
с́ ć

\qquad

 0000000

 PRINTING
\vdots
\vdots
WORK
HORSE RIDING
\vdots
\vdots
WORK
COMMUTING
WORK
COMMUTING
COMMUTING
WORK
WORK
EATING
EORK
WORK
WORK
WORK
WORK
WORK
BATTERY WORK
IN
INCARGERATION
WORK
WORK
WORK
WORK
ATTEND CLASS
EATING
WORK

Nicto
 $0000000 \dot{C}$
 -iociocioco
 $\dot{-i o j} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{c}=$
 -o்ociodic

\qquad

42 MINISTER
43 EXHIBITS SPECIALIST
44 ILLUSTRATOR
45 CARPENTER
46 ENGRAVER
47 FINGERPRINT EXAMINER
48 POLICE OFFIGER
49 ELECTRON MIGROSCOPIST
50 REAL ESTATE AGENT
51 NEWSPAPER DISIRIBUTOR
52 GROUNDSMAN
53 CONSTRUCTION
54 OFFICE ADMINISTRAIOR
55 OAYCARE OPERATOR
56 LAWYER
57 AUTO MECHANIC
58 ELECTRONICS TECHNICIAN
59 GARAGE EMPLOYEE
60 ELECTRONICS TEGHNIGIAN 61 INVENTORY CLERK
62 LAB EVIDENCE EXAMINER
63 RETIRED
64 HYDROOGIST
65 COMPUTER PROGRAMMER
66 DEPUTY SHERIFF
67 AUTO MECHANIC
68 MACHINIST
69 SEGRETARY
70 VEHICLE MAINT SUPER
79 LIGHT TRUCK MECHANIC
72 BIKE MECHANIC
73 PRISONER
74 BIKE SHOPKEPER
75 FLEVATOR MFFHANIC.
76 HEAVY TRUCK MECHANIC
777 POWEREQUIP MECHANIC
78 STUDENT
79 STUDENT
80 MEDICAL TECHNOLOGIST
TABLE 3a-Continued.

Occupation	Activity	Wash	Barium				Antimony							
			RB	RP	RO	LB	Lp	10	RB	Rp	RO	18	LP	L0
81 ARCHITECT	Hork	N	0.011	n.d.	0.016				n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
82 medical technologist	Hork	r	0.041	0.089	0.038	0.011	0.078	0.017	n.d.	0.003	n.d.	n.d.	n.d.	n.d.
83 Marketing	Work	N	n.d.	0.013	n.d.	n.d.	n.d.	0.013	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
84 Engineer	WORK	r	0.010	n.d.	0.019	0.011		0.015	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
85 HOUSEHIFE	WORK	N	n.d.	n.d.	0.021	n.d.	0.013	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
86 RECEPTIONIST	WORK	N	n.d.		0.011		0.015	n.d.	n.d.		n.d.			0.003
87 forensic lab analyst	commuting	N	0.136	0.137	0.211	0.138	1.09	0.398	0.014	0.274	0.041	0.014	0.762	0.283
88 STUDENT INTERN	WORK	y	0.026	0.063	n.d.	0.013	0.048	0.045	n.d.	0.005	n.d.	n.d.	0.006	n.d.
89 STUDENT	NORMAL	Y	0.023	0.026	0.024	0.010	0.031	0.018	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
90 Student	NORMAL	r	0.027	0.011	0.015	0.015	0.021	0.015	n.d.	n.d.	n.d.	n.d.	n.	n.d.
91 design engineer	HORK	N	0.033	0.023	0.014	0.019	0.041	n.d.	n.d.	n.d.	n.d.	0.004	n.d.	n.d.
92 draft Sman	Hork	y	0.018	0.021	0.021	0.020	0.018	0.025						
93 NURSE	cooking	r	0.071	0.039	0.060	0.051	0.024	0.052	0.003	nd	n.d	0.008	0.006	
94 JANItor	WORK	y	0.296	0.261	0.273	0.259	0.218	0.211	0.008	0.015	0.003	0.009	0.033	0.037
95 CLERK	WORK	y	0.043	0.026	0.053	0.045	0.072	0.046	n.d.	0.003	n.d	n.d.	0.003	n.d.
96 DRY CLEANER	HORK	y	0.088	0.163	0.094	0.068	0.115	0.109	n.d.	0.027	n.d.	0.004		n.d.
97 Counter clerk	HORK	y		0.292	0.184	0.163	0.148	0.142		0.022		0.004	0.005	n.d.
98 firefighter	HORK		0.117	0.068	0.140	0.032	0.080	0.054		n.d.	0.005		n.d.	n.d.
99 CLERK	HORK	N	0.120	0.140	0.388	0.167	0.352	0.117	0.003	n.d.	n.d.	0.006	n.d.	n.d.
100 accounting clerk	WORK	N	0.127	0.156	0.123	0.287	0.195	0.043	n.d.	0.006	n.d.	n.d	n.d	n.d.
101 clerk	HORK	N			0.039			0.026	0.003					n.d.
102 building manager			0.086	0.204	0.187	0.190	0.217	0.130		0.004	0.006	0.005	0.006	n.d.
103 Paint manager	HORK	N	0.274	0.541	0.129	0.255	0.543	0.113	0.007	0.018	0.006	0.006	0.018	
104 Painter	WORK	N	0.122	0.187	0.168	0.173	0.342	0.197	0.006	0.008	0.005	0.006	0.009	0.004
105 Carpenter	HORK	N	0.296	0.378	0.330	0.284	0.045	0.204	0.015	0.010	0.015	0.014	0.021	0.013
106 Painter	HORK	N	0.215	0.206	0.199	0.229	0.503	0.168	0.013	0.047	0.012	0.009	0.103	0.004
107 Logger	HORK	N	0.071	0.137	0.015	0.134	0.188	0.016	n.d.	0.004	n.d.	n.d.	0.008	
108 sales	HORK	r	0.072	0.042	0.041	0.021	0.028	0.012			n.d.	n.d.		n.d.
109 auto parts CLERK	HORK	N	0.112	0.114	0.017	0.100	0.100		0.004	0.013	n.d.	n.d.	0.004	n.d.
110 MOTEL DESK CLERK	WORK	N	0.055	0.044		0.020	0.101	.	n.d.	n.		n.d.	0.013	
111 Jewlery sales	HORK		0.126	0.140		0.091	0.197		0.006	0.025	.	0.009	0.065	
112 bartender	WORK	r	0.023	0.043		0.018	0.023			n.d.		n.d.		
113 elementary teacher	WORK	N	0.147	0.192		0.096	0.162		0.003	n.d.		n.d.	0.005	
114 auto mechanic	HORK	N	0.246	0.366	0.174	0.224	0.562	0.232	0.010	0.017	0.006	0.015	0.053	0.019
115 PRINTER	HORK	N	0.060	0.060	0.040	0.031	0.058	0.037		0.006	0.004		0.004	
116 SERVICE STATION MECH	HORK		0.247	0.247	0.154	0.165	0.297	0.144	0.007	0.006	n.d.	0.008	0.017	0.004
117 GUN DEALER	WORK		0.057	0.119	0.058	0.050	0.095	0.058	0.008	0.035	0.010	0.007	0.027	0.023
118 student	ExERCISE		0.052	0.047			0.029		0.009	0.015	0.012		0.007	0.009

		¢		O.
등				
－${ }^{\circ}$	Mo			
ถัะ				
	$\stackrel{\square}{\circ}$	cic	$\stackrel{\circ}{\circ}$	${ }^{\circ}$
			ciocto	
oٌo				
		000.00		
¢		Mnw	む̃ay	
			\bigcirc	
	年	$\bigcirc 0{ }^{\circ} 0$	－	边
吕管				
			－	－
				0
ain			ํoธธ	－ixa
$0{ }^{\circ}$	$0^{\circ} 0^{\circ} 0^{\circ}{ }^{\circ} 0^{\circ} 0^{\circ}$		－0 Coiocoió	$00^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}{ }^{\circ}$

EMan

[^1]TABLE $3 a$-Continued.

Occupation	Activity	Hash	Barium				Antimony							
			RB	RP	RO	LB	LP	LO	RB	RP	RO	LB	LP	10
161 Manager	WORK	N	0.056	0.070	0.019	0.025	0.074	n.d.	n.d.	0.003	n.d.	n.d.	0.003	n.d.
162	WORK	Y	0.056	0.049	0.027	0.041	0.039	0.018	n.d.	n.d.	n.d.	n.d.	n.d.	n-d.
163 transcriber	WORK	Y	0.056	0.197	0.086	0.054	0.210	0.063	0.005	0.009	0.003	n.d.	0.011	0.003
164 DELIVERY ORIVER	WORK	N	0.125	0.280	0.124	0.129	0.303	0.102	0.009	0.019	0.006	0.006	0.010	0.004
165 Copier repair	WORK	N	0.045	0.094	0.024	0.071	0.067	0.038	n.d.	0.006	n.d.	n.d.	0.010	n.d
166 heavy equip operator	WORK	N	0.397	0.701		0.356	1.51		0.010	0.012		0.012	0.020	
167 STATE ATtORNEY GENERAL	WORK	Y	0.054	0.072	n.d.	0.036	0.100	0.042	0.004	0.003	0.003	0.003	0.006	0.003
168 SECRETARY	WORK	N	0.127	0.105	0.040	0.162	0.149	0.076	n.d.	n.d.	n.d.		n.d.	0.003
169 TV CAMERAMAN	WORK	N	0.153	0.187	0.084	0.430	0.170	0.126	0.020	0.048	0.007	0.027	0.041	0.012
170 building maintenance	WORK	Y	0.172	0.236	0.074	0.100	0.198	0.030	0.015	0.030	0.005	0.013	0.038	0.004
171 documents examiner	WORK	Y	0.068	n.d.	0.044	0.091	0.129	0.194	n.d.	n.d.	n.d.	0.003	0.006	0.003
172 CARPENTER	WORK	N	0.313	0.299	0.340	0.371	0.411	0.516	0.012	0.014	0.007	0.014	0.010	0.011
173 GARDENER	WORK	N	0.355	0.434	0.401	0.273	0.248	0.199	0.024	0.010	0.013	0.017	0.010	n.d.
174 PAINTER	WORK	N	0.111	0.164	0.198	0.226	0.049	0.120	0.012	0.007	0.014	0.009	0.009	0.010
175 TILE INSTALLER	WORK	N	0.238	0.362	0.110	0.205	0.349	0.184	0.005	0.008	0.010	0.009	0.013	0.007
176 PALNTER	WORK	N	0.073	0.117	0.086	0.078	0.104	0.040	n.d.	0.008	n.d.	0.003	0.005	0.003
177 INSTRUMENT REPAIR	WORK	N			n.d.	0.015		0.059	0.009	0.014	0.005	0.005	0.011	0.003
178 SALESMAN	WORK	N	n.d.	0.013	n.d.	0.017	0.019	n.d.						
179 medical technologist	WORK	Y	0.031	0.079	0.013	0.021	0.050	n.d.						
180	WORK	Y	0.080	0.106	0.048	0.060	0.081	0.042	n.d.	n.d.	n.d.	n.d.	0.003	n.d.
181 Lab technologist	work	r	0.049	0.049	0.024	0.035	0.030	0.046	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
182 MEDICAL TECHNOLOGIST	WORK	φ	0.028	0.038	0.036	0.012	0.033	0.010	n.d.	n.d.	n.d	n.d.	n.d.	n.d.
183 PILOT	NOT WORK	N	n.d.	0.012	0.013	0.013	0.010	0.013	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
184 MEDICAL TECHNOLOGIST	WORK	Y	n.d.	0.041	0.017	0.032	0.048	0.020	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
185 HOUSEWIFE	WORK	Y	0.015	0.019	0.015	n.d.	0.014	n.d.						
186 MEDICAL TEChNOLOGIST	WORK	Y	n.d.	0.048	0.013	0.027	0.020	0.017	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
187 SECRETARY	WORK	r	0.024	0.017	0.032	0.017	0.017	0.022	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
188 STUDENT	CLASSROOM	Y	0.042	0.061	0.027	0.015	0.046	0.069	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
189 STUDENT	CLASSROOM	N	0.082	n.d.	0.046	0.049	0.063	0.036	0.007	0.021	0.005	0.010	0.009	0.009
190 STUDENT	classroom	Y	0.017	0.027	0.017	0.034	0.049	0.019	n.d.	n.d.	n. ${ }^{\text {d }}$	n.d.	n.d.	n.d.
191 STUDENT	classroom	N	0.056	0.130	0.042	0.051	0.065	0.035	0.009	0.016	n.d.	0.004	0.012	0.007
192 STUDENT	CLASSROOM	r	0.014	n.d.	n.d.	0.033	0.027	0.031	0.004	n.d.	n.d.	n.d.	n.d.	0.005
193 STUDENT	CLASSROOM	Y	0.023	0.018	0.020	0.022	0.050	0.033	0.004	n.d.	n.d.	0.004	n.d.	n.d.
194 STUDENT	CLASSROOM	N	0.011	n.d.	0.015	0.015	0.032	0.018	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
195 STUDENT	CLASSROOM	N	0.037	n.d.	0.017	0.044	0.080	0.050	n.d.	n.d.	n.d.	n.d.	0.004	n.d.
196 INSIRUCTOR	CLASSROOM		0.030	0.055	0.053	0.051	0.051	0.037	0.003	0.016	0.006	0.004	0.010	0.003
197 STLIDENT	CLASSROOM		0.040	0.083	0.057	0.055	0.071	0.066	n.d.	0.003	n.d.	n.d.	0.004	n.d.
198 STUDENT	CLASSROOM		0.033	0.013		0.035	0.068		n.d.	0.006		n.d.	0.003	
199 STUDENT	CLASSROOM		0.025		0.021	0.023	0.122	0.024	0.003	0.003	n.d.	n.d.	n.d.	n.d.
200 StUDENT	CLASSROOM		0.024	0.074	0.011	0.028	0.074	0.048	0.003	0.006	0.003	n.d.	n.d.	n.d.
201 STUDENT	CLASSROOM		0.087	0.057	0.053	0.131	0.329	0.112	n.d.	0.003	n.d.	0.004	0.007	
202 SIUDENT	CLASSROOM	.	0.024	D. 118	0.049	0.029	0.135	0.059	n.d.	0.006	0.004	0.003	0.008	n.d.
203 SIUDENT	classroom	.	0.012	n.d.	0.013	0.022	0.069	0.028	n-d.	n.d.	n.d.	n.d.	0.004	n.d.

\％	¢		¢
			웅NㅜㅇNㅔ융
			－ 0
		¢	－
＋	¢ ${ }^{\text {m }}$		잉
	－¢ \％		
			気気気閏
0°－	$000^{\circ} 000000$	$00^{\circ 00000000}$	$00^{\circ 0}$
	答 	 	－
\％	등응 ©＇0．		$\stackrel{\text { ® }}{\text { ¢ }}$
－00000＇	－0000000000		－0．0．0
No			
－	－	000000000	0000 N゙ \％
	\bigcirc		$\bigcirc \cdot{ }^{\circ}$
			す무으ํ욱
－0000000		－0000000000	－0ióo
			mono
$0^{\circ 00000}$	－0000000000	－000000000	－0＇00＇

| n．d． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.441 | 1.14 | 0.436 | 0.480 | 2.43 | 0.516 | 0.044 | 0.274 | 0.041 | 0.037 | 0.762 | 0.283 |
| 0.081 | 0.13 | 0.071 | 0.085 | 0.14 | 0.067 | 0.005 | 0.012 | 0.004 | 0.005 | 0.013 | 0.006 |
| 0.087 | 0.17 | 0.089 | 0.096 | 0.24 | 0.082 | 0.008 | 0.027 | 0.008 | 0.007 | 0.052 | 0.025 |

[^2]TABLE $3 b-$ Analytical results for individual hand blank samples in the high-Ballow-Sb category.

cup	Activity W	Wash	Barium					Antimony				1 B	1 P	10	Cond
			R8	RP	R0	18	LP	10	RB	RP	Ro				
1 service stationattendant	work		0.890	0.483		0.335	0.669		0.031	0.038		0.023	0.084		4
2 PII2ZA PARLOR MANAGER	handle money	N	0.246	3.47		0.924	6.53		0.005	0.010		0.006	0.015		${ }^{2}$
3 auto mechanic	WORK		0.527	1.31		1.13	1.75		0.004	0.032		0.012	0.030		3
4 AUTO BIDY REPAIR	WORK	N	1.38	3.83	0.709	1.50	1.23	0.986	0.023	0.063	0.009	0.017		0.026	6
5 ROAD SIGN REPAIR	supervisor	N	0.397	0.863	0.376	0.561	2.29	0.543	0.010	0.140	0.005	0.014	0.132	0.004	4
6 WELDER	WORK	N	0.905	0.257	0.228	0.168	0.579	0.253	0.039	0.020	0.010	0.020	0.029	0.019	7
7 TIRE REPAIR	WORK	N	0.882	1.02	0.577	0.654	1.26	0.756	0.024	0.023	0.012	0.018	0.022	0.015	7
8 8 AUTO MECHANIC	Hork	N	1.20	2.13	1.46 1.56	1.52 0.847	2.23	1.37 2.41	0.042 0.036	0.160 0.047	0.052 0.044	0.032	${ }^{0.083}$	0.042	5
10 AUTO MECHANIC	manager	N	0.319	0.537	0.481	0.541	0.416	0.498	0.011	0.039	0.018	0.027	0.020	0.016	4
11 locksmith	FLOOR MORK	N	0.716	1.26	0.576	0.682	1.15	0.451	0.031	0.070	0.025	0.036	0.082	0.009	
$12 \mathrm{BRICKLAYER/GARDINER}$	SHOP/DRIVE	N	0.566	0.362		0.316	0.795		0.005	0.003		0.004	0.008		
13 PAPER LILN OPERATITR	WORK W/ bacle	r	13.6	2.05	0.423	0.545 1.01			0.005	0.008			0.004	0.005	2
14 INCENERATOR OPERATOR 15 METAL WORER	Werk Weld cut/grind	o	0.343 0.863	0.710 1.38	1.12	1.01 0.560	0.513 0.847	0.223 0.397	0.011 0.030	0.042 0.056		0.037 0.014			
16 WOOD WORKER	TABLE SAW		0.870	0.726	0.785	0.724	1.13	0.297	0.015	0.071	0.035	0.047	0.060	0.020	4
	work	N	0.44	${ }^{0.536}$	0	0.539	0.225	${ }_{0}^{0.499}$	0.022	0.029	0.023	0.025	0.025	0.020	${ }_{5}^{6}$
18 heavy truck mechanic	brake work	N	1.46	13.4	3.94	1.73	42.3	1.23	0.036	0.122	0.032	0.035	0.103	0.029	5

TABLE 3c-Analytical results for individual hand blank samples in the low-Ba/high-Sb category.

\footnotetext{
TABLE 3d-Analytical results for individual hand blank samples in the high-Ba/high-Sb category.

nccupation	Barium							Antimony				LP	LO	Cond
	Activity Wash	RB	RP	Ro	LB	LP	LO	RB	RP	RO	LB			
1 StEAM FItter	WORK N	0.638	0.698		0.413	0.626		0.089	0.275		0.087	0.074		7
2 SAND BLASTER/PAINTER	WORK Y	0.516	1.03	2.06	1.13	2.21	0.501	0.054	0.111	0.048	0.051	0.061	0.013	7
3 TELEPHONE PREWIRER	WORK N	0.627	1.66	0.338	0.400	1.55	0.184	0.151	0.416	0.066	0.137	0.623	0.146	4
4 Electrician	HORK N	0.343	0.420	0.268	0.589	0.533	0.153	0.051	0.052	0.030	0.069	0.068	0.025	4
5 CARPENTER	HORK N	4.09	24.5	3.57	1.42	6.30	0.918	0.109	0.306	0.040	0.040	0.233	0.018	3
6 CEment laborer	WORK N	0.843	1.16	0.602	0.460	0.776	0.493	0.056	0.077	0.033	0.023	0.080	0.022	7
7 CARPENTER	SAW/HAMMER PLYWD N	3.03	5.33	1.39	1.68	2.27	1.31	0.188	0.135	0.229	0.190	0.168	0.174	7
8 Small appliance repair	WORK	0.666	0.862	0.552	0.737	2.70	0.370	0.056	0.085	0.049	0.081	0.130	0.047	7
9 mechanic	MUFFLER/OIL/BELT	1.16	0.849	1.10	1.32	1.00	1.11	0.070	0.034	0.055	0.154	0.054	0.065	7

a high-Ba/low-Sb group, and a low-Bahigh-Sb group. Subjects with one hand in the high$\mathrm{Ba} / \mathrm{high}-\mathrm{Sb}$ group and the other in some other group were classed as high-Ba/high-Sb. Subjects with one hand in either high-low group and the other hand in the low-low group were classed in the appropriate high-low group. Individual results for each subject in the four groups are shown in Table 3. Not all sampling information is shown in Table 3 because of space limitations.

Several generalizations can be made concerning the results shown in Table 3. Most significantly, using the cutoff limits selected, 235 of the 269 hand blank subjects, or about 87%, are in the low-low hand blank group. It is important to consider how samples are collected before placing undue emphasis on the distribution of samples in this and other studies. In our experience, sample collectors tend to select as subjects either acquaintances, who generally fall in the low hand blank group, or subjects suspected of being "problem cases," such as automobile mechanics and others with high exposure to environmental sources of Ba or Sb or both. Sample contributors tend to concentrate on subjects from one or the other, but not both of these groups. The distribution of subjects between the high and low hand blank groups is highly biased by this collection procedure. Consequently, it is likely that the high hand blank group is overrepresented in this study and that the positively skewed frequency distribution of all samples is not representative of the total nonshooting population. Survey data such as these cannot be used in a statistical model based on any assumed distribution to set thresholds for distinguishing firearm discharge from environmental exposure unless it can be demonstrated that the subjects were randomly selected from the nonshooting population. Despite this limitation, we still observed that the four hand blank groups agreed reasonably well with the ranges reported in other studies. The threshold values selected to divide the groups are arbitrary, but are the levels of Ba and Sb above which many examiners begin to attach significance. The discussion which follows is based upon the divisions made in Table 3.

Low-Low Hand Blank Group

Summary statistics for the 235 low hand blank samples are given in the lower portion of Table $3 a$. As for all the hand blank samples as a group, the frequency distribution for the low hand blank group in all sampling areas is positively skewed. That is, most results are very low, with only a few results above the mean value. Changing the cutoff values from 0.5 and 0.05 to 0.2 and 0.02 for Ba and Sb . respectively, only decreases the number of samples in the low group from 235 to 190 . The frequency distribution of the 190 samples remains positively skewed, however. The Ba and Sb differences among individual samples in this group are not significant because of their proximity to the analytical detection limits and the variability normally observed in repeated sampling of the same person [7].

High Hand Blank Groups

Along with the analytical results shown in Tables $3 b$ through $3 d$ for the three high hand blank groups, we have also listed the test subject's occupation, whether the person was actively engaged in that occupation, whether the subject washed his or her hands in the two hours prior to sampling, and the appearance of the swabs recorded during microscopic examination. Other factors such as handedness and hand size are not included in Table 3 because of space limitations. Their roles will be discussed separately.

Several observations can be made about the high hand blank samples as a group. First. the occupations represented in the high hand blank groups are those in which a practitioner's hands get dirty, such as mechanics, or they represent unusual exposure to Ba or Sb , such as the use of barium chloride $\left(\mathrm{BaCl}_{2}\right)$ by a paper mill worker. Second, the
condition of the swabs in these groups was, in general, very dirty and well used. Third, the geographic location is misrepresented because collectors in a few areas collected suspected "worst-case" samples, while others only collected samples from readily available colleagues. As examples of this we offer the observations that 11 of the 34 samples in the three high-level categories were submitted by a single hand blank collector, and the 9 high-high samples by only 4 collectors. Observation of the data shown in the highlevel groups does indicate, however, that some activities are more likely than others to contaminate the hands of nonshooters with high levels of Ba or Sb or both.

Only the samples in the high-high category are of concern to the GSR examiner as potentially being misinterpreted as positive indications of the presence of GSR. Of primary significance is the fact that only 9 of the 269 subjects in this study fall into the highhigh category. Blind adherence to the selected threshold levels would incorrectly classify these 9 subjects as positive for the presence of GSR. Further consideration of these samples in light of several criteria based upon test-firing and other interpretational experience is warranted. Data from hundreds of test-firings using ammunition containing both Ba and Sb indicate that the mass ratio of Ba to Sb on swabs containing GSR is almost always in the range of 1 to $10 .{ }^{3}$ Of the 9 subjects in Table $3 d$, Subject 2 (left hand), Subject 7 (right hand), and Subjects 5, 6, and 9 have $\mathrm{Ba} / \mathrm{Sb}$ ratios greater than 10 in most or all sampling areas. A constraint to fixed application of this ratio rule is that the test-firing data were obtained using a shooter with clean hands. In case situations, environmental levels of Ba and Sb present prior to shooting can affect the postdeposition ratios. In general, Ba is more prevalent than Sb in the environment, so $\mathrm{Ba} / \mathrm{Sb}$ ratios greater than 10 are possible in actual shooting situations.
A second consideration used in differentiating between environmental and firearm-discharge-derived Ba and Sb is the observation from test-firing studies that shooters normally exhibit higher levels of Ba and Sb on the backs of their hands than on the palms [11]. ${ }^{3}$ Of the nine subjects in Table 3d, only Subjects 4 (left hand) and 9 had higher levels of both Ba and Sb on the backs than on the palms of their hands. A constraint to the palm/back rule is that test-firing results are generally obtained immediately after firing, with little or no additional handling of the firearm or ammunition. It is well documented that with the handling of a used firearm, the passage of time. and the resumption of normal activities following a shooting, GSR deposits from the back of the hand are frequently redistributed to other areas, including the palms. It is not unusual to find higher levels on the palms than the backs of the hands of known shooters in actual case situations. A third criterion developed from observation of swab kits and their usage is that swabs which appear to be very dirty during microscopic examination often contain greater levels of Ba and Sb than less well-used or otherwise cleaner swabs. As shown in the last column of Table $3 d$, of the nine samples, only Nos. 3, 4, and 5 are less than very heavily soiled. All of these factors must be considered in combination with other caserelated factors, such as the time between the shooting and sample collection, the type of firearm, and the activity of the subject, before forming an opinion concerning the presence of GSR based upon high levels of Ba and Sb.

Effects of Other Variations

The data in this study were collected to consider the effects of several variables on the levels of Ba and Sb on hand blanks. However, the interdependency of the sex, geographic location, hand size, and hand washing with the occupation and activity makes it difficult to discern the separate effects of these variables. Nevertheless, the effects of each variable
were considered independently using distribution-free approaches. These results and the effects of other variables are discussed in the following sections.

Sex-The levels of Ba and Sb are significantly lower for females than for males when considering either the low hand blank group or the entire hand blank group. For example, the median Ba and Sb levels on the backs of all female hands were 0.042 and $0.001 \mu \mathrm{~g}$, respectively, and the corresponding male levels were 0.068 and $0.005 \mu \mathrm{~g}$. This probably reflects differences in occupation and activity between the women in the study, who were predominantly housewives, students, and secretaries, and the men, who had a greater representation of high-exposure occupations and activities, such as machinists. mechanics, and heavy-equipment operators.

Washing—Subjects who reported washing their hands in the two hours prior to sampling had lower levels of Ba and Sb on the backs (medians: $\mathrm{Ba}, 0.041 ; \mathrm{Sb}, 0.002 \mu \mathrm{~g}$) than subjects who had not washed their hands (medians: $\mathrm{Ba}, 0.081 ; \mathrm{Sb}, 0.005 \mu \mathrm{~g}$). It has been reported [7] and is generally accepted that washing of hands removes some portion of the Ba and Sb contained thereon. We expect this generalization to apply to environmental exposure as well as to GSR-derived Ba and Sb . Some of the highest Ba and Sb levels were found on subjects who reported washing their hands. Clearly, the amount of Ba and Sb remaining after washing hands depends upon how the washing is done. The measured levels are also affected by the activity between the time of washing and the time the hand sample was obtained. It is interesting to note that many of the subjects who reported washing their hands within the two hours prior to sampling produced very dirty swabs.

Hand Size-The levels of Ba and Sb on the back of the hands increase as the hand size increases from small to medium to large. The differences are significant for Ba (medians: small, 0.042 ; medium, 0.054 ; and large, $0.064 \mu \mathrm{~g}$), but within the analytical uncertainty for Sb (medians: small, 0.002 ; medium, 0.003 ; large, $0.005 \mu \mathrm{~g}$). This may be a true effect of hand size but is also a reflection, at least in part, of the greater proportion of females and their lower exposure environments in the small-hand group. In some instances, very high values were observed for small or medium hands which were particularly dirty.

Back, Palm, and Optional Area Distributions--For the samples in this study, the palms had significantly higher values than the backs for both Ba (medians: back, $0.055 \mu \mathrm{~g}$; palm, $0.085 \mu \mathrm{~g}$) and Sb (medians: back, $0.003 \mu \mathrm{~g}$; palm, $0.006 \mu \mathrm{~g}$). Optional hand blank areas have about the same amounts of Ba and Sb as the backs of hands. However, there are not enough optional area samples to date to make a definitive statement as to their potential usefulness.

Element Ratios-As discussed previously, the ratio of Ba to Sb on the back of the hand area of a shooter is normally in the range of 1 to 10 for samples taken immediately after firing. Of the hand blank samples in this study. 28% of the back of the hand areas have $\mathrm{Ba} / \mathrm{Sb}$ ratios between 1 and 10 . The other samples cover the entire range from no detectable Ba to no detectable Sb .

Handedness - There are no significant relationships among the levels of elements found on the right and left hands of the subjects in this study and their stated hand preference. The median differences between the backs of the left and right hands is zero for Ba and Sb for both right- and left-handed subjects.

Geographic Distribution-Effects of the location from which the samples were collected cannot be discerned in this study because of the differences in persons selected for sampling by the various collectors. Apparent higher results in some geographic locations, in comparison with others, occurred because of conscious efforts by collectors to sample either "high-risk" or "average" activity persons but generally not both.

Activity-A wide range of activities are represented in these hand blank data. While generalizations concerning activity are difficult to make, there is some indication that activities such as working as an auto mechanic, electrician, or construction worker have a tendency to result in higher levels of Ba and Sb on the hands. It is significant to note, however, that most activities in the high hand blank groups also occur in the low-low group. Thus, automobile maintenance work, for example, does not guarantee the presence of high levels of Ba or Sb on a person's hands.

Summary

Samples are collected from the hands of suspected shooters and submitted to the forensic science laboratory to determine if sufficient evidence is present in the samples to place the suspect in the environment of gunshot primer residue. A major concern of the GSR examiner involves his or her ability to distinguish between evidence of gunshot primer residue and an environmental false positive. Statistical modeling of average hand blank values to find threshold numbers to use for all cases is neither wise nor statistically valid because hand blank subjects are not randomly drawn from and representative of the nonshooting population. Instead of using any statistical model, we suggest a commonsense approach based upon experience gained in evaluating hand blank and test-firing swabs. Multiple factors must be considered during the process of forming a critical opinion regarding the most likely source of high levels of barium and antimony on samples from a suspect's hands. The most important of these factors are case information, microscopic examination data, quantitative analysis data, hand blank data, and firearm test-firing data.

Acknowledgments

We gratefully acknowledge the participants of the 1982 and 1984 GSR seminars at the FBI Academy for their helpful input during the planning stages of this project; John W . Kilty for his encouragement and helpful suggestions during the implementation stages of this project; the volunteer participants who collected the hand blank samples; the technical staff of the FBI Laboratory, who assisted in kit preparation, documentation, and analysis; and E. Roger Peele. Robert C. Halberstam, John P. Riley, and Dean D. Fetterolf for offering critical comments on the manuscript.

References

[I] Schlesinger. H. L., Lukens, H. R., Guinn, V. P., Hackleman, R. P., and Korts, R. F., "Special Report on Gunshot Residues Measured by Neutron Activation Analysis," U.S. Atomic Energy Commission Report GA 9829, National Technical Information Service, U.S. Department of Commerce, Springfield, VA, 1970.
[2] Albu-Yaron, A. and Amiel, S., "Instrumental Neutron Activation Analysis of Gunpowder Residues," Journal of Radioanalytical Chemistry, Vol. 11, 1972, pp. 123-132.
[3] Midkiff, C. R., "Barium and Antimony for the Detection of Firearms Discharge Residue: Expected Handblank Levels." Identification News, Vol. 23, May 1973, pp. 9-10.
[4] Cowan, M. E., Purdon, P. L., Hoffman, C. M., Brunelle, R., Gerber, S. R., and Pro, M., "Barium and Antimony Levels on Hands: Significance as Indicators of Gunfire Residue," Journal of Radioanalytical Chemistry, Vol. 15, No. 1, 1973, pp. 203-218.
[5] Krishnan. S. S., "Detection of Gunshot Residue on the Hands by Neutron Activation and Atomic Absorption Analysis:" Journal of Forensic Sciences, Vol. 19, No. 4, Oct. 1974, pp. 789-797.
[6] Cornelis, R. and Timperman, J., "Gunfiring Detection Method Based on Sb, Ba, Pb, and Hg Deposits on Hands: Evaluation of the Credibility of the Test," Medicine, Science, and the Law, Vol. 14, No. 2, April 1974, pp. 98-116.
[7] Kilty, J. W., "Activity After Shooting and Its Effect on the Retention of Primer Residue," Journal of Forensic Sciences, Vol. 20, No. 2, April 1975, pp. 219-230.
[8] Jones, P. F. and Nesbitt, R. S., "A Photoluminescence Technique for the Detection of Gunshot Residues," Journal of Forensic Sciences, Vol. 20, No. 2, April 1975, pp. 231-242.
[9] Nesbitt, R. S., Wessel, J. E., Wolten, G. M., and Jones, P. F., "Evaluation of a Photoluminescence Technique for the Detection of Gunshot Residue," Journal of Forensic Sciences, Vol. 22, No. 2, April 1977, pp. 288-303.
[10] Rudzitis, E., "Analysis of the Results of Gunshot Residue Detection in Case Work," Journal of Forensic Sciences, Vol. 25, No. 4, Oct. 1980, pp. 839-846.
[11] Newton, J. T., "Rapid Determination of Antimony, Barium, and Lead in Gunshot Residue via Automated Atomic Absorption Spectrophotometry," Journal of Forensic Sciences. Vol. 26, No. 2, April 1981, pp. 302-312.
[12] Koons, R. D., Havekost, D. G., and Peters. C. A., "Analysis of Gunshot Primer Residue Collection Swabs Using Flameless Atomic Absorption Spectrophotometry: A Reexamination of Extraction and Instrument Procedures," Journal of Forensic Sciences, Vol. 32, No. 4, July 1987, pp. 846-865.
[13] Kilty, J. W. "A Review of the FBI Laboratory's Gunshot Primer Residue Program," Crime Laboratory Digest, Vol. 13, No. 2, April 1986, pp. 54-61.

Address requests for reprints or additional information to
Robert D. Koons
Forensic Science Research Unit
FBI Laboratory
FBI Academy
Quantico, VA 22135

[^0]: This is Publication No. 89-08 of the Laboratory Division of the Federal Bureau of Investigation. Names of commercial manufacturers are provided for identification only, and inclusion does not imply endorsement by the Federal Bureau of Investigation. Received for publication 18 Sept. 1989; accepted for publication 30 Oct. 1989.
 ${ }^{1}$ Special agent and chemist, respectively, Elemental and Metals Analysis Unit, FBI Laboratory, Washington, DC.
 ${ }^{2}$ Research chemist. Forensic Science Research Unit, FBI Laboratory, FBI Academy, Quantico, VA.

[^1]: 53 drafi iman examiner 4 OOCUMENTS EXAMINER
 5 FIREARMS EXAMINER
 SEROLOGIST SEROLOGIST
 FORENSIC CHEMIST NARCOTICS ANALYST
 SECRETARY

[^2]: Footnores to Table 3a－d：
 Occupation is that occupation in which the subject is normally employed． wash signifies whether subject washed hands in the two hours immediately yrior to sampling．

 n．d．signifies not detectable，barium less than $0.01 \mu \mathrm{~g}$ or ant imony less than $0.003 \mu \mathrm{~g}$ ．
 Cond is microscopic observation of swab on a scale from for very slightly soiled to 7 for very heavily soiled．
 a signifies sample in which barium could not be determined because of a high copper background．

